Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[(2,2'-bipyridyl)oxido-vanadium]-di- μ_{2}-oxido-[(2,2'-bi-pyridyl)oxidovanadium]- μ_{3}-selenito-bis[(2,2'-bipyridyl)dioxidovanadium]-μ_{3}-selenito]

Zhao-Xun Lian,* Ping Liu, Jia-Min Zhang, Tian-Xi Wang and Tian-Jun Lou

School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
Correspondence e-mail: zhxalian@hotmail.com

Received 27 August 2007
Accepted 28 September 2007
Online 24 October 2007
In the title compound, $\left[\mathrm{V}_{4} \mathrm{O}_{8}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]$, there are two distinct vanadium coordination environments. Alternating corner-shared $\mathrm{VO}_{4} \mathrm{~N}_{2}$ octahedra and SeO_{3} pyramids result in eight-membered centrosymmetric $\mathrm{V}_{2} \mathrm{Se}_{2} \mathrm{O}_{4}$ rings. In addition, pairs of V centres form centrosymmetric $\mathrm{V}_{2} \mathrm{O}_{6} \mathrm{~N}_{4}$ clusters via edge-sharing. These two kinds of secondary building units are linked in an $A B A B A B$ fashion to give an infinite chain whose nature is unprecedented in $\mathrm{Se}-\mathrm{V}-\mathrm{O}$ systems.

Comment

A number of vanadates and vanadium phosphates have been explored extensively as a result of their catalytic properties in organic oxidations and their intercalation properties (Centi, 1993; Cheetham et al., 1999; Chirayil et al., 1997; Ouellette et al., 2006; Sananes et al., 1995; Shan et al., 1999; Shi et al., 2000). In contrast, the known chemistry of vanadium selenites is very limited (Harrison et al., 1995; Halasyamini \& O’Hare, 1997; Kim et al., 2001; Kim, Kwon \& Lee, 1996; Kim, Lee et al., 1996; Kwon et al., 1996; Lee \& Kwon, 1996; Lee et al., 1995; Vaughey et al., 1994). Recently, many planned attempts have been made to modify structurally and to design hybrid vanadium selenites through the introduction of organic species as templates, charge-compensating cations or space-filling agents (Choudhury et al., 2002; Dai, Chen et al., 2003; Dai et al., 2004, 2005; Dai, Shi, Li, Chen et al., 2003; Dai, Shi, Li, Zhang et al., 2003; De et al., 2003; Harrison et al., 2000; Pasha et al., 2003; Shi et al., 2002). This strategy appears to afford primitive control over the dimensionality of the solid through manipulation of the steric requirements and denticity of the ligand, and enjoys considerable success. In our previous work, we have successfully obtained a novel vanadyl selenite templated by an organic salt, viz. $\left[(\mathrm{VO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{SeO}_{3}\right)\right]_{2}\left[\left(\mathrm{H}_{2}\right.\right.$ piperazidine $\left.) \mathrm{SO}_{4}\right]$
(Lian et al., 2004). As an extension of our work, we report here the synthesis and crystal structure of the title compound, (I), which exhibits an infinite chain motif whose nature is unprecedented in $\mathrm{Se}-\mathrm{V}-\mathrm{O}-L$ systems, where L is an organic ligand.

(I)

In the asymmetric unit of (I), there are two crystallographically independent V atoms and one distinct Se atom (Fig. 1). Each V centre has a distorted octahedral coordination environment defined by four O atoms and two cis-positioned N -atom donors of the $2,2^{\prime}$-bipyridine ($2,2^{\prime}$-bipy) ligand. Within the $\mathrm{VO}_{4} \mathrm{~N}_{2}$ environment of atom V 1 , atoms O 1 and O 2 occur as terminal $\mathrm{V}=\mathrm{O}$. The remaining O atoms are from two centrosymmetrically related SeO_{3} groups, thus forming two $\mathrm{V}-\mathrm{O}-$ Se linkages with one short and one long $\mathrm{V}-\mathrm{O}$ bond (Table 1). In the case of atom V2, two centrosymmetrically related V 2 atoms are asymmetrically bridged via two symmetry-related μ_{2}-O6 atoms to form a dimeric $\mathrm{V}_{2} \mathrm{O}_{6} \mathrm{~N}_{4}$ unit, similar to that in (1,10-phenanthroline) $)_{2} \mathrm{~V}_{2} \mathrm{SeO}_{7}$ and $\left[\mathrm{VO}_{2}\left(2,2^{\prime}-\text { bipy }\right)\right]_{2}(\mathrm{tp})(\mathrm{tp}$ is terephthalate) (Dai, Shi, Li, Zhang et al., 2003; Yuan et al., 2003). Atom O 7 is coordinated to atom V 2 as terminal $\mathrm{V}=\mathrm{O}$. One O -atom donor from an SeO_{3} group is coordinated to atom V 2 to make a $\mathrm{V}-\mathrm{O}-$ Se linkage.

The $\mathrm{V}-\mathrm{N}$ bond lengths are in the range 2.142 (2)2.289 (2) \AA (Table 1), which are similar to those observed in similar compounds documented elsewhere (Dai, Shi, Li,

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: $(A)-x,-y+1,-z+2 ;(B)-x+1$, $-y+1,-z+1$.]

Zhang et al., 2003; Yuan et al., 2003). The V-O bond lengths vary from 1.6084 (2) to 2.3511 (2) \AA and are grouped into four types. The shortest bond lengths are around $1.62 \AA$ and correspond to terminal $\mathrm{V}=\mathrm{O}$. In the $\mathrm{V}-\mathrm{O}-\mathrm{V}$ linkages, the bridging O atoms are connected to two symmetry-related V atoms, with one short $\mathrm{V}-\mathrm{O}$ bond corresponding with one long $\mathrm{V}-\mathrm{O}$ bond. In the case of the $\mathrm{V}-\mathrm{O}-\mathrm{Se}$ linkages, similar patterns are observed, and longer $\mathrm{V}-\mathrm{O}$ bonds correspond with shorter $\mathrm{Se}-\mathrm{O}$ bonds. Given that the longest bridging $\mathrm{V}-$ O bond [V1-O 4^{i}; symmetry code: (i) $\left.1-x, 1-y, 1-z\right]$ is trans to a terminal $\mathrm{V}=\mathrm{O}$ bond, it is hypothesized that the trans effect plays an appreciable role in governing the $\mathrm{V}-\mathrm{O}$ bond lengths in compound (I).

The $\mathrm{VO}_{4} \mathrm{~N}_{2}$ geometry for atom V 1 is similar to those in $\left(2,2^{\prime}\right.$-bipyridine $) \mathrm{VSeO}_{4}$ and $\left[(\mathrm{VO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{SeO}_{3}\right)\right]_{2}\left[\left(\mathrm{H}_{2}\right.\right.$ piperazidine) $\left.\mathrm{SO}_{4}\right]$ (Dai, Shi, Li, Zhang et al., 2003; Lian et al., 2004). In these two compounds, there is one $\mathrm{V}=\mathrm{O}$ bond and three $\mathrm{V}-\mathrm{O}$ bonds forming three $\mathrm{V}-\mathrm{O}-\mathrm{Se}$ linkages. The Se atom in (I) is tricoordinated by O atoms and exhibits pseudotetrahedral geometry, with the lone pair of electrons occupying the apical site. All of the O atoms around atom Se 1 form

Figure 2
The chain structure of (I), viewed down [101].

Figure 3
A view of the packing of the chains in (I) in the $a c$ plane.
$\mathrm{Se}-\mathrm{O}-\mathrm{V}$ linkages, with an average $\mathrm{Se}-\mathrm{O}$ bond length of 1.704 (3) \AA and an average $\mathrm{O}-\mathrm{Se}-\mathrm{O}$ angle 100.6 (2) ${ }^{\circ}$. Bondvalence sum calculations (Brown \& Altermatt, 1985; Brown \& Shannon, 1973; Brese \& O'Keeffe, 1991) give values of 4.7, 4.8 and 4.2 for atoms V1, V2 and Se1, respectively, showing that the V 1 and V 2 sites are in the +5 oxidation state and the Se site is in the +4 oxidation state. In $\left[(\mathrm{VO})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{SeO}_{3}\right)\right]_{2^{-}}$ $\left[\left(\mathrm{H}_{2}\right.\right.$ piperazidine $\left.) \mathrm{SO}_{4}\right]$, the V centres are in the +4 oxidation state.

The coordination patterns described above result in the structure of the title compound consisting of infinite chains constructed from SeO_{3} pyramids, $\mathrm{VO}_{4} \mathrm{~N}_{2}$ octahedra and $\mathrm{V}_{2} \mathrm{O}_{6} \mathrm{~N}_{4}$ clusters (Fig. 2). Two of the O atoms from the SeO_{3} pyramids are corner-shared by two symmetrically equivalent $\mathrm{V}_{1} \mathrm{O}_{4} \mathrm{~N}_{2}$ octahedra to form cyclic centrosymmetric eightmembered $\mathrm{V}_{2} \mathrm{Se}_{2} \mathrm{O}_{4}$ rings. Such rings can often be connected into an infinite chain via edge-shared or corner-shared bridges. The former type is well documented elsewhere (Pasha et al., 2003; Dai, Shi, Li, Zhang et al., 2003; Dai, Shi, Li, Chen et al., 2003; Dai et al., 2005), while the latter is only exemplified by $\mathrm{K}(\mathrm{VO})\left(\mathrm{SeO}_{3}\right)_{2} \mathrm{H}(\mathrm{Kim}$, Lee et al., 1996). These chains can be further developed into one-, two- and three-dimensional structures, similar to those in open-framework metal phosphates. In (I), the exocyclic nonterminal O atoms on each side of the $\mathrm{V}_{2} \mathrm{O}_{6} \mathrm{~N}_{4}$ clusters are bonded to Se atoms. This connection results in the secondary units of $\mathrm{V}_{2} \mathrm{Se}_{2} \mathrm{O}_{10} \mathrm{~N}_{4}$ and $\mathrm{V}_{2} \mathrm{O}_{6} \mathrm{~N}_{4}$ being linked in an $A B A B A B$ fashion into infinite chains. Here, the $\mathrm{V}_{4} \mathrm{Se}_{2} \mathrm{O}_{15} \mathrm{~N}_{8}$ unit can be viewed as the principal building block of the chain. To our knowledge, this type of chain has not been reported previously in $\mathrm{Se}-\mathrm{V}-\mathrm{O}$ systems.

In the case of the complex-linked vanadates, vanadiumoxygen polyhedra are assembled via corner-sharing or edgesharing into building blocks. The metal complexes link these building blocks to result in zero-, one-, two- and threedimensional frameworks (Debord et al., 1996; Zhang et al., 1997; Hagrman \& Zubieta, 2001; Hui et al., 2004), where metal complex fragments act either as a bridge between the vana-dium-oxygen polyhedra or as a capping motif. In comparison with these compounds, the overall structure of (I) may be best depicted as 'isolated' $\mathrm{VO}_{4} \mathrm{~N}_{2}$ octahedra and $\mathrm{V}_{2} \mathrm{O}_{6} \mathrm{~N}_{4}$ clusters bridged by SeO_{3} in the μ_{3} mode to form infinite chains.

In the packing arrangement of (I), the $2,2^{\prime}$-bipyridine ligands are arranged in a wave-like fashion. $\mathrm{C} 20-\mathrm{H} \cdots \pi$ interactions with a C20 $\cdots \pi$ distance of 3.59 Å occur within the infinite chains, while the chains are crosslinked by aromatic interactions between adjacent $2,2^{\prime}$-bipyridine rings with an interplanar spacing of $3.31 \AA$, and by $\mathrm{C} 8-\mathrm{H} \cdots \pi$ interactions with a C8 $\cdots \pi$ distance of $3.66 \AA$ (Fig. 3).

Experimental

A mixture of $\mathrm{V}_{2} \mathrm{O}_{5}(0.036 \mathrm{~g}, 0.2 \mathrm{mmol}), \mathrm{SeO}_{2}(0.060 \mathrm{~g}, 0.4 \mathrm{mmol})$, 2,2'-bipyridine $(0.032 \mathrm{~g} 0.2 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was stirred for about 30 min , and then sealed in a Teflon-lined stainless steel autoclave and heated to 393 K for 4 d . The container was cooled to ambient temperature spontaneously. An essentially quantitative yield
(about 75%, based on V) of red block-shaped single crystals of (I) was recovered by vacuum filtration and drying in air.

Crystal data

$\left[\mathrm{V}_{4} \mathrm{O}_{8}\left(\mathrm{SeO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]$	$\gamma=76.41(3)^{\circ}$
$M_{r}=605.21$	$V=1027.0(4) \AA^{3}$
Triclinic, $P \overline{1}$	$Z=2$
$a=9.816(2) \AA$	Mo $K \alpha$ radiation
$b=10.026(3) \AA$	$\mu=2.74 \mathrm{~mm}^{-1}$
$c=11.090(2) \AA$	$T=298(2) \mathrm{K}$
$\alpha=87.53(3)^{\circ}$	$0.46 \times 0.43 \times 0.39 \mathrm{~mm}$

$\beta=75.49$ (2) ${ }^{\circ}$
Data collection
Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation, 2001)
$T_{\text {min }}=0.302, T_{\text {max }}=0.361$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.087$
$S=1.04$
3588 reflections

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN3059). Services for accessing these data are described at the back of the journal.

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Bruker (1997). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Centi, G. (1993). Catal. Today, 16, 5-26.
Cheetham, A. K., Férey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Chirayil, T., Zavalij, P. Z. \& Whittingham, M. S. (1997). J. Mater. Chem. 7, 2193-2195.
Choudhury, A., Udaya, K. D. \& Rao, C. N. R. (2002). Angew. Chem. Int. Ed. 41, 158-161.
Dai, Z. M., Chen, X. B., Shi, Z., Zhang, D., Li, G. H. \& Feng, S. H. (2003). Inorg. Chem. 42, 908-912.
Dai, Z. M., Li, G. H., Shi, Z., Fu, W. S., Dong, W. J., Xu, J. \& Feng, S. H. (2004). Solid State Sci. 6, 91-96.
Dai, Z. M., Li, G. H., Shi, Z., Liu, X. B. \& Feng, S. H. (2005). Inorg. Chem. Commun. 8, 890-893.
Dai, Z. M., Shi, Z., Li, G. H., Chen, X. B., Lu, X. Y., Xu, Y. H. \& Feng, S. H. (2003). J. Solid State Chem. 172, 205-211.

Dai, Z. M., Shi, Z., Li, G. H., Zhang, D., Fu, W. S., Jin, H. Y., Xu, W. \& Feng, S. H. (2003). Inorg. Chem. 42, 7396-7402.

De, G. J. H., Li, Y. G., Huang, R. D., Wang, E. B., Yuan, M., Hu, C. W. \& Xu, L. (2003). Inorg. Chem. Commun. 6, 1091-1095.

Debord, J. R. D., Zhang, Y., Haushalter, R. C., Zubieta, J. \& O’Connor, C. (1996). J. Solid State Chem. 122, 251-258.

Hagrman, P. J. \& Zubieta, J. (2001). Inorg. Chem. 40, 2800-2809.
Halasyamini, P. S. \& O'Hare, D. (1997). Inorg. Chem. 36, 6409-6412.
Harrison, W. T. A., Dussack, L. L. \& Jacobson, A. J. (1995). Acta Cryst. C51, 2473-2476.
Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. \& Nenoff, T. M. (2000). Angew. Chem. Int. Ed. 39, 3808-3810.
Hui, C. Y., Gu, X. J., Peng, J. Z., Shi, Y. \& Wang, E. B. (2004). J. Mol. Struct. 692, 243-247.
Kim, Y. H., Kwon, Y. U. \& Lee, K. S. (1996). Bull. Korean Chem. Soc. 17, 11231127.

Kim, Y. H., Lee, K. S., Kwon, Y. U. \& Han, O. H. (1996). Inorg. Chem. 35, 7394-7398.
Kim, Y. T., Kim, Y. H., Park, K. \& Kwon, Y. U. (2001). J. Solid State Chem. 161, 23-30.
Kwon, Y. U., Lee, K. S. \& Kim, Y. H. (1996). Inorg. Chem. 35, 1161-1167.
Lee, K. S., Kwon, Y. U., Namgung, H. \& Kim, S. W. (1995). Inorg. Chem. 34, 4178-4181.
Lee, K. S. \& Kwon, Y. U. (1996). J. Korean Chem. Soc. 40, 379-383.
Lian, Z. X., Huang, C. C., Zhang, H. H., Yang, H. F., Zhang, Y. \& Yang, X. F. (2004). J. Chem. Crystallogr. 34, 489-494.

Molecular Structure Corporation (2001). TEXSAN. Version 1.10. MSC, The Woodlands, Texas, USA.
Ouellette, W., Yu, M. H., O’Connor, C. J. \& Zubieta, J. (2006). Inorg. Chem. 45, 3224-3239.
Pasha, I., Chouldhury, A. \& Rao, C. N. R. (2003). Inorg. Chem. 42, 409-415.
Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Sananes, M. T., Hutchings, G. J. \& Volta, J. C. (1995). J. Chem. Soc. Chem. Comтии. pp. 243-244.
Shan, Y. K., Huang, R. H. \& Huang, S. P. D. (1999). Angew. Chem. Int. Ed. 38, 1751-1755.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Z., Feng, S. H., Gao, S., Zhang, L. R., Yang, G. Y. \& Hua, J. (2000). Angew. Chem. Int. Ed. 39, 2325-2327.
Shi, Z., Zhang, D., Feng, S. H., Li, G. H., Dai, Z. M., Fu, W. S., Chen, X. B. \& Hua, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1873-1874.
Vaughey, J. T., Harrison, W. T. A., Dussack, L. L. \& Jacobson, A. J. (1994). Inorg. Chem. 33, 4370-4375.
Yuan, M., Wang, E. B., Lu, Y., Wang, S. T., Li, Y. G., Wang, L. \& Hu, C. W. (2003). Inorg. Chim. Acta, 344, 257-261.

Zhang, Y., Zapf, P. J., Meyer, L. M., Haushalter, R. C. \& Zubieta, J. (1997). Inorg. Chem. 36, 2159-2165.
2.3511 (18)
1.6084 (18)
1.7337 (16)
1.9093 (18)
1.9876 (18)
2.210 (2)
2.289 (2)
76.03 (7)
106.45 (9)
97.50 (9)
103.55 (8)
99.98 (9)
81.99 (8)
159.32 (7)
93.00 (9)
155.09 (8)
88.80 (8)
79.37 (7)
164.14 (8)
89.38 (8)
79.25 (7)
80.93 (7)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+2$.

All H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Henan Institute of Science and Technology for financial support.

